A lower bound on the barrier parameter of barriers for convex cones

نویسنده

  • Roland Hildebrand
چکیده

Let K ⊂ R be a regular convex cone, let e1, . . . , en ∈ ∂K be linearly independent points on the boundary of a compact affine section of the cone, and let x∗ ∈ K be a point in the relative interior of this section. For k = 1, . . . , n, let lk be the line through the points ek and x ∗, let yk be the intersection point of lk with ∂K opposite to ek, and let zk be the intersection point of lk with the linear subspace spanned by all points el, l = 1, . . . , n except ek. We give a lower bound on the barrier parameter ν of logarithmically homogeneous self-concordant barriers F : K → R on K in terms of the projective cross-ratios qk = (ek, x ∗; yk, zk). Previously known lower bounds by Nesterov and Nemirovski can be obtained from our result as a special case. As an application, we construct an optimal barrier for the epigraph of the || · ||∞-norm in R n and compute lower bounds on the barrier parameter for the power cone and the epigraph of the || · ||p-norm in R .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the barrier parameter of homogeneous convex cones

We characterize the barrier parameter of the optimal self{concordant barriers for homogeneous cones. In particular, we prove that for homogeneous convex cones this parameter is the same as the rank of the corresponding Siegel domain. We also provide lower bounds on the barrier parameter in terms of the Carath eodory number of the cone. The bounds are tight for homogeneous self-dual cones.

متن کامل

Einstein-Hessian barriers on convex cones

On the interior of a regular convex cone K ⊂ R there exist two canonical Hessian metrics, the one generated by the logarithm of the characteristic function, and the Cheng-Yau metric. The former is associated with a self-concordant logarithmically homogeneous barrier on K with parameter of order O(n), the universal barrier. This barrier is invariant with respect to the unimodular automorphism su...

متن کامل

A lower bound on the optimal self-concordance parameter of convex cones

Let K ⊂ R be a regular convex cone, let e1, . . . , en ∈ ∂K be linearly independent points on the boundary of a compact affine section of the cone, and let x∗ ∈ K be a point in the relative interior of this section. For k = 1, . . . , n, let lk be the line through the points ek and x ∗, let yk be the intersection point of lk with ∂K opposite to ek, and let zk be the intersection point of lk wit...

متن کامل

Constructing self-concordant barriers for convex cones

In this paper we develop a technique for constructing self-concordant barriers for convex cones. We start from a simple proof for a variant of standard result [1] on transformation of a ν-self-concordant barrier for a set into a self-concordant barrier for its conic hull with parameter (3.08 √ ν + 3.57)2. Further, we develop a convenient composition theorem for constructing barriers directly fo...

متن کامل

A full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity

In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 142  شماره 

صفحات  -

تاریخ انتشار 2013