A lower bound on the barrier parameter of barriers for convex cones
نویسنده
چکیده
Let K ⊂ R be a regular convex cone, let e1, . . . , en ∈ ∂K be linearly independent points on the boundary of a compact affine section of the cone, and let x∗ ∈ K be a point in the relative interior of this section. For k = 1, . . . , n, let lk be the line through the points ek and x ∗, let yk be the intersection point of lk with ∂K opposite to ek, and let zk be the intersection point of lk with the linear subspace spanned by all points el, l = 1, . . . , n except ek. We give a lower bound on the barrier parameter ν of logarithmically homogeneous self-concordant barriers F : K → R on K in terms of the projective cross-ratios qk = (ek, x ∗; yk, zk). Previously known lower bounds by Nesterov and Nemirovski can be obtained from our result as a special case. As an application, we construct an optimal barrier for the epigraph of the || · ||∞-norm in R n and compute lower bounds on the barrier parameter for the power cone and the epigraph of the || · ||p-norm in R .
منابع مشابه
Characterization of the barrier parameter of homogeneous convex cones
We characterize the barrier parameter of the optimal self{concordant barriers for homogeneous cones. In particular, we prove that for homogeneous convex cones this parameter is the same as the rank of the corresponding Siegel domain. We also provide lower bounds on the barrier parameter in terms of the Carath eodory number of the cone. The bounds are tight for homogeneous self-dual cones.
متن کاملEinstein-Hessian barriers on convex cones
On the interior of a regular convex cone K ⊂ R there exist two canonical Hessian metrics, the one generated by the logarithm of the characteristic function, and the Cheng-Yau metric. The former is associated with a self-concordant logarithmically homogeneous barrier on K with parameter of order O(n), the universal barrier. This barrier is invariant with respect to the unimodular automorphism su...
متن کاملA lower bound on the optimal self-concordance parameter of convex cones
Let K ⊂ R be a regular convex cone, let e1, . . . , en ∈ ∂K be linearly independent points on the boundary of a compact affine section of the cone, and let x∗ ∈ K be a point in the relative interior of this section. For k = 1, . . . , n, let lk be the line through the points ek and x ∗, let yk be the intersection point of lk with ∂K opposite to ek, and let zk be the intersection point of lk wit...
متن کاملConstructing self-concordant barriers for convex cones
In this paper we develop a technique for constructing self-concordant barriers for convex cones. We start from a simple proof for a variant of standard result [1] on transformation of a ν-self-concordant barrier for a set into a self-concordant barrier for its conic hull with parameter (3.08 √ ν + 3.57)2. Further, we develop a convenient composition theorem for constructing barriers directly fo...
متن کاملA full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity
In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 142 شماره
صفحات -
تاریخ انتشار 2013